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Abstract. The time-step in integration process has two restrictions.
The first one is the time-step restriction due to accuracy requirement 7,
and the second one is the time-step restriction due to stability require-
ment 7,¢. The stability property of the Runge-Kutta method depend
on stability region of the method. The stability function of the explicit
methods is the polynomial. The stability regions of the polynomials are
relatively small. The most of explicit methods have small stability re-
gions and consequently small r,¢. It obliges us to solve the ODE with
the small step size 7, < Tac. The goal of our article is to construct the
third order explicit methods with enlarged stability region (with the big
Tat! Tst 2 Tac). To achieve this aim we construct the third order polyno-
mials: 1 - z+2%/2—2%/6+ 3" . diz* with the enlarge stability regions.
Then we derive the formula for the embedded Runge-Kutta third order
accuracy methods with the stability functions equal to above polynomi-
als. The methods can use only three arrays of the storage. It gives us
opportunity to solve large systems of differential equations.

1 Introduction.

Let us consider the system of ordinary differential equations:

d .
-CT;{ = f(uat)a uh:‘o = Uo, (1)

with sufficiently smooth function f(u,t) and Runge-Kutta explicit method:

Yi =y +h ) aijf(to +cjh, Yj),
7=l (2)

vi=y+h Elb;'f(to +¢;h,Y;).
J=

The table of the method (2) is the following:

@

* This article was written with the kind help of professors Lebedev V.I., Wanner G.,
Hairer E. and Russian Fund Fundamental Researches. ‘
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0j0 0 ... 0
c2lazs 0 ... O
cslas; agz 0

T}i‘r 3)

where ct = 'l(0,~c2,‘c3,...,c,), bt = (b1,...,8,), et = (1,...,1). Let us apply
method (3) for the simple test problem:

C, 0.1 “e a‘,‘-_l 0
1 bl b2 e b'

’

u = —)u, = ug = yo. 4)

ul
t=tqg

The numerical result is expressed in term of stability function:

s—1
1= Ry(Mh)yo = (1+ 3 b Ale(-2h)+ )y, (5)

=0

Stability function R,(z), 2 = Ak is the polynomial of degree s.
Definitionl.1: We will call a region U = {2z : |R,(2)| < 1} stability region.
Definition1.2: We will call an interval [ = U N[0, oo real stability interval.
We will construct a third order explicit methods with enlarged real stability
interval. This means that order conditions must satisfy:

ibi=1,
Z:,jzl biaij = Z: b,‘c,' = 1/2’ (6)
23 5 =1 bidijaj, = b*A% = 1/6,

:,j,k=1 bia;ja; =,Z; bic? = 1/3.

From the order conditions (6) it follows that:

R,(z) = 1—z+z2/2—z3/6+id;z". (7)

i=4

Absolute value of stability function |R,(z)| decreases in the small vicinity of the
point z = +0. It means that stability region U and real stability interval are
not empty set. The aim of our speculations is to construct function (7) with the
maximum or ’nearly’ real stability interval.

Theorem 1.3([2)): If s > 3 and

B IR < =1. (8)

The polynomial R,(t) has ¢ mazimal value M if there exist n +1 — k (k=38 for
the third order methods) points t; : 0 < ¢; < t2...<tnt1-p < M such that:

R,(t1) = -n=-LR,(t2) = +7 = 1‘, . .,R,(z,,+1_k) = (—1’)"+1'_", (9)



For practical calculations we will take 5 not equals to 1 but ’near’ optimal
valuei.e. n & 0,98 < 1. It gives us more stability for many practical problems but
it decreases real stability interval. The algorithm of construction of the optimal
second and third order polynomials was described in the works of ,
Medovikov and Lebedev [2, 4]. Here we reproduce only roots of the some third
order polynomials. These roots we used for the calculation of the parameters of
the third order methods and used it in the program DUMKAS. In the table 1.1
we represent the roots of the polynomials reduced to the interval [0,1]. To cal-
culate the roots {v;}{ of stability function (7) you have to multiply roots from
the table and the parameter of stability region from the second column of the

table.

329

Fig. 1. Third order polynomial and it’s stability region.

TABLE 1.1 The roots of the third order stability polynomials.

Degree

Stability
region

Roots

3

2.5005127005

(0.638297752962491,0.0000000000E+-0),
(0.280728100628313,0.722787568361731),
(0.280728100628313,-0.722787568361731)

15.96769685542662

(1.316188704042163E-001,0.00000000E+-0),
(5.217998085157960E-2,-1.472133692919474E-1),
(5.217998085157960E-2,1.472133692919474E-1),

5.397127885347366E-1,8.210181090527608E-1,
9.792807844727616E-1

38.31795251315424

(5.707036703430203E-2,0.000000000E+0),
(2.307842599268251E-2,-6.407179746204085E-2),
(2.307842599268251E-2,6.407179746204085E-2),

2.650900447972151E-1,4.564443606877882E-1,
6.434022749551114E-1,8.066819069334241E-1,
9.275476063065802E-1,9.917867224786107E-1

15

109.9635751502718

(2.027487087133956 E-2,0.00000000E+0),
(8.316021861212946E-3,-2.280465621150311E-2),
(8.316021861212946E-3,2.280465621150311E-2),

1 1.002074585617464E-1,1.825798689818222E-1,

2.765670440070977E-1,3.791595999288834E-1,
4.861890912273565E-1,5.931003215440658E-1
6.952794913650315E-1,7.882921191244471E-1,
8.680911462040328E-1,9.311998388255081E-1,

9.748666481030083E-1,9.971869309844605E-1
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Degree

- Stability
region

Roots

36 [644.3020154572322

(3.488129601956453E-3,0.000000000E+0)
(1.441852687344269E-3,-3.926697828110118E-3)
(1.441852687344269E-3,3.926697828110118E-3)
1.778795197054982E-2,3.322288535643486 E-2,
5.192760724673927E-2,7.393156860341134E-2,
9.912096771275233E-2,1.273224815410135E-1,
1.583307101392706E-1,1.919142061529804E-1,
2.278200310551857E-1,2.657765020564892E-1,
3.054957626118224F-1,3.466761985247533E-1,
3.890048660640773E-1,4.3215994777837T0E-1,
4.758132470553982E-1,5.196327141245989E-1,
5.632849914369575E-1,6.064379628604224E-1,
6.487632895565875E-1,6.899389145951866E-1,
7.296515180870848E-1,7.675989046864292E-1,
8.034923056404166E-1,8.370585780984603E-1,
8.680422850997063E-1,8.962076405169030E-1,
9.213403042299864E-1,9.432490139204415E-1,
9.617670411057193E—1,9.767534603597429E—1,
9.880942220801697E-1,9.957030206519658E-1,
9.995219514104168E-1

48 |1145.804705468596

(1.963379226522905E-3,0. 000000000E+0),
(8.122094719300525E-4,-2. 210430853325917E-3),
(8.122094719300525E-4,2. 210430853325917E-3),

1.006092366834490E-2,1.874663175494967E-2,
2.938902171273918E-2,4.199468711545039E-2,
5.653456570661632E—2,7.295652733345687E—2,
9.119500031334919E-2,1.111743678974924E-1,
1.328104842674921E-1,1.560115518572836E-1,
1.806787615356976E-1,2.067068432197892E-1,
2.339845866405663E-1,2. 623953579846579E-1,
2.918176237070712E-1,3. 221254861934987E-1,
3.531892327054925E-1,3. 848758973520228E-1,
4.170498349018754E-1,4, 495733047149258E-1,
4.823070627473591E-1,5. 151109593853533E-1,
5.478445407355358E-1,5. 803676509224324E-1,

6.125410328983705E-1,6. 442269252512830E—1
6.752896524954869E-1,7. 055962063465749E-1,
7.350168155120516E-1,7. 634255015728661E-1,
7.907006185865761E-1,8. 167253741097289E-1,
8.413883294145599E-1,8. 645838767626988E-1,
8.862126916957106E-1,9. 061821584084480E-1,
9.244067663858447E-1,9. 408084766063493F-1,

9.553170557451642E-1,9. 678703769472033E-1,
9.784146858826100E-1,9. 869048309461775E-1,
9.933044566154082E-1,9. 975861591395987E-1,

9. 997316038935454E—1
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2 Third order Runge-Kutta method with enlarged
stability region

Let us consider method (2) with s = 3k. Stability function can be represented
in the form:

k k
Ri(z) = [](1 - diz + dj2? - di2%) = [] RS, (2). (10)

i=1 i=1

We will consider composxtlon method [1] where method (2) is comprises k sub-
methods:

Yo = Yo .

Y3 = vi_1 + hay, f(ti—1, vi-1)

Y3 = vic1 + h (@ f(tioa, vio1) + abo f(tio1 + he, Y5))

vi = vie1 4+ h (0 f(Gio1, vio1) + U5 f(fien -+ heh, Y3) + b3 f(ti-n + heh, Y4))
i =1;- 1+h*(b' +b' +b3)—ts—1+hs,
i=1,. = 8/3,

¥ = vg.

Stability function of each submethods equals to:
R, =1-diz+dy2% —di2® (11)
To satisfy order conditions (6) we have to set:

b + b+ b5 =dj
”'zc'zb?‘a‘.’égé = ‘;5 | 2
3(ch)® + b (Ca)2 (d'a)3/3 +((d})? - 2d3)ti-1 = B

The fourth equality of (12) follows from the fourth equality of (6). We want
every submethod to satisfy cubature formulae:

i

/ 72dr = b (tie1)? + bi(heh + tic1)® + bi(hek +1;-1)% = (3 —t3_,)/3 (13)

ti—1

Another equalities of the system (12) follow from the stability function of the
submethod (11). The system (12) has four equations and six variables. There.are
two free parameters and one can choose it to achieve some additional purpose.
We consider only one case here. Let us take:

i _ .t [ |
b} = a3, b5 = aj3,.
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In this case formulas for parameters of the methods are the following:

% =4},

c5 = p3 + pf,

c‘, _ B—b' cl 3

2= P;‘.’:a’. '

. - plpl 1
af; = g2, (14)
b, = ag,,

b = ob+ o~ B,
as; =b‘1’

i=1,...,k=s/3,

where p{,p},04 are the inverse values for the roots of the stability function Ri..
Now to construct the method we take the roots of the third order polynomial,
separate it on the groups : 1/v;, = g{,1/v;, = Po /7, = Py (bl is cho-
sen as a real value), construct stability function R) and solve systems (12) for
i =1,...,k = s/3. This method require only three arrays to store and it is
sufficient also for step-size control procedure. Consider the algorithm used in
program DUMKAZ3. Let us h be a step-size of the method, (7 iy /3 step sizes
of each submethod 3°F=*/% h; = h. We remind that value A is chosen so that the
spectrum of the problem lie inside the stability region: h< M/Anss.

Yo = Yo ,

Y2 = vioy + haly f(ti-1,%-1) . ,

Ys=Y2+h ((“51 —a31)f(ti-1,vie1) + @b f(ticy + heh, Y2)) (15)

v = Y3 + hb3 f(ti-1 + hei, Ys) :
i=1...,k=3s/3,

Y1 = v,

Let us check the order conditions (6). Submethod (15) is Runge-Kutta method

with stability function R§ = (1—dfz+d}2? — diz%) for every i. Stability function
- k=s/3

of the method is the product R, = [] R%. We use polynomials with the roots
=1

from the table 1.1 so we have automatically that R, = 1-z+2%/2—-23/6+ i diz*.

. =4
Hence the first three equality of the order conditions (6) are satisfied. Th:e fourth
one follows from (13):

L7 k=s/3 [/ k=s/3 3 3
/1’2dT= Z (/ Tsz) = Z t? _3t?—1 — th:s/;_to.

to i=1 i=1

i—1

Consequently the last of (6) equalities of the order conditions is satisfied as well:

25,'6? =

i=1

.

CI |
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Finally we consider the time-step control procedure. We took this idea from the
book by Hairer E., Wanner G.[1]. We use embedded formula to step-size control
procedure. For this aim let us derive second order method with solution §;. With
the help of the same speculation as in [1] we derive the formula:

err = [|§1 — |, 16)
hnew =h min(facmaz, max(facm.',-,, fac(toI/err)ll(P“'l))),

where [|.|| is some norm in R™, h- step-size of the previous step, facmin and
facmaz - some factors of step-size diminishing and increasing, tol is the tolerance
which we require from our calculations and p -accuracy of the embedded method
(r = 2 in our case). To calculate §; consider the last step in a method (15).
Solution y; = vy is the third order solution, so we can calculate second order
solution fx_, in the point ¢4_; = tx — hek = to + h:

=y — h(c:)f(tk;vk) + .g(tk—hvk—l)’

and recalculate solution with the second order ©; in the point #; with the help
of the formulas:

Dk -1

- . tio1,Ve—1) + f(ti—1 + het,Y:
}Q:vk—l"'h(cg)f(k 1, Vk 1) f(k 1 ? 2),,

2
f s ti—1 + hek Y tr_1 + hek,Y:
To= -+ hich - oy Lot Hheb Vo) 4 flteos 4 hef Vo)
N -1+ het, Ya tk,
=Y3+h(c’4‘—c§)f(tk 1+ c323)+f(k vk).

We can derive:
hh—n=bh-wn= -—h(c")i(—l-—)—i(—l—l"‘ va)tf(in=1 tn-n)
h(ck)f(‘h 1,Vk—1)+.f(tk-1+hc,.!’=)+ an
h(c3 k) tx_1+hch Yz + th—1+hek Yy +

h(C., s)ﬂtk—l+hc;,Ya!+[!tk,vk!

We will use this difference to calculate next step size by formula (16). The
algorithm (15) require 3 arrays to store, moreover the last step in (15) use only
2 arrays. This gives us opportunity to calculate the difference (17) without any
help of additional array. We calculate the sum:

22= h c4f(tk 1, Vk= 1)+h f(tk 1+hcz,Y2),

after the second step in the formula(15) then calculate f(tx—1 + hck,Ys) and
add to the sum: : N

72 = Z2+h f(tk 1+ hek, Ya),
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after calculation of the solution y; = v; we calculate J(tk, vx) which we need for
the next step and add this term to the sum:

k
22=22- h%’f(tk, vk).

The sum Z2 we use as a difference §j; — y; and substitute it to the formula (16)
calculate new step size. If ||Z2|| exceeds tolerance: ||§;, — y; || > tol we can reject
this step. We have written the program DUMKAS3 to test this algorithm and
next chapter is dedicated to numerical results.

3 Numerical results.

To test the program DUMKAS3 we use the test problems from the book of Hairer
E. and Wanner G.[1). We take three programs RKC(Sommeijer(3]), DUMKA
([4]) and DUMKAS3 and solve these problems. The results are represented in the
figure 2 in axes: y- the time of calculations, z - accuracy. To use the program

| DUMKA
KC

b
3 ’ l
DUMKA3
"IW I
10100 10 409 10 107 10¢ 107 100 100 1 R I e T T T T T g

Fig. 2. The result of comparison of the programs for problems: 1-CUSP, 2-BURGERS

DUMKAS one needs to write two SUBROUTINES: subroutine of calculation of
the right hand of equation and program for evaluation maximal eigen value Ay, g,
and the value of COU = 2/Amaz. It is convenient to use and you don’t need
calculations of Jacoby matrix and linear algebra procedures.
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