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- On Crank-— Nicolson schemes for non-stationary problems
with operators reducible to skew-symmetric form

A.N. KAZAKOV, V.I. LEBEDEYV, and A. A. MEDOVIKOV

Abstract — Higher-order accurate Crank-Nicolson schemes are obtained for solving homogeneous and
inhomogeneous Cauchy’s problems with operators reducible to a skew-symmetric form. The phase error is
diminished owing to a special algorithm of choosing time-steps. For homogeneous problems, by using
complex time-steps we obtain difference schemes with an accuracy of 0(1'6), 0(13 ). On the basis of the
difference schemes the algorithms for numerical solution of diffraction problems are presented and the
results of calculations are given.

The Crank - Nicolson difference schemes are known to retain the solution norm in the
problems with skew-symmetric operators (see, for example, [4]). Therefore an error
arising in calculations with the use of these schemes is of a phase nature.

In this paper, owing to a special choice of the time-step sequence 7,, we construct
Crank~-Nicolson difference schemes with an accuracy of #(t*), €(z%), €(z®) in the
phase, where 7 is the average size of the time-step. Some of the schemes considered
are schemes with complex steps. Difference schemes are suggested for solving a
diffraction problem.

1. INCREASING THE ACCURACY OF CRANK~-NICOLSON DIFFERENCE
SCHEMES BY CHANGING VARIABLE TIME-STEPS

Let A4 be an operator reducible to a skew-symmetric form with the aid of an
invertible operator Z: ZAZ 1= ~(Z4Z~1)* =B. Consider a Cauchy problem for a
differential equation with the time-independent operator A4:

du _ =10 1.1
17 Au, u|t=0 u’, te[0,T]. (1.1)

The exact solution of the problem is obtained in the form:
u(t) = exp(A0u®,  Zu = exp(Br)Zu" (1.2)

where exp(A¢) is an operator exponent.
Let {p}, {4}, i=1,2,..., be a complete set of eigenvectors and eigenvalues for
the operator 4. Expand the solution into a Fourier series

u(t) = X ¢ exp(td)e, (1.3)
k .

where

ul= g,
X
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As the operator exponent of a skew-symmetric operator B is a unitary operator, we
have

1Zu@| = 124°]. (1.4)
Consider now the Crank - Nicolson-type difference scheme:

7 .= -1 ~ .
G,y =U-5A) Y+ 5T, i=0,1,... s
u9=u(0)
where the steps 7. will vary with the index #, and assume that |7| = @(f) and t> 0 is

small.
After n steps, the transition operator is of the form R (A), where

R (%)= f]l (1-10)7 11+ 7). (1.6)

The operator ZR (A)Z -1 =R (B) will be a unitary operator for every n due to the
operator’s B being skew-symmetric. Hence

Iz, || = || Zu®) . (L.7)

This implies that the property of retaining the norm will also hold for difference
scheme (1.5).
Now let us examine an error induced by the scheme itself.

Assume that [|Zu(0)|| =1, ||Z~1BZ+| <M. The difference between the exact
solution Zu = exp(Bt)Zu, and the approximate solution Zi =R (B)Zu, of problem
1.1 is

u=-id=Z Yexp(Bt) - R (B)Zu’ =z~ Y1 - exp(In(R (B)) - Bt)) Zu

= Z}I - exp(In(R (B)) ~ Br)) exp(Bt) Zu®
where

In(R (B)) = 3 In(®,(4) P,

and P, is a projector onto the subspace, which is a span of the eigenvector Zg. Using
the expansion

1+x _ 00 JC2m+1
Ty =22 51
we obtain ‘
u-i=2"NI-exp(D(B))Zu = (exp(~ D (B)) - I)Ziz (1.8)
where

© n (.r_x)Zm +1
D (x) = 2y AL . :
(%) mZ=0 El e i 78 (1.9)
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Let for some r > 1 the steps T, satisfy the relations:
= > .3 & 2r-1
2y t=t, X 77=0,., 2% =0, (1.10)
i=1 i=1 i=1 .

Then the first non-zero term in (1.9) will be a function of 7,...,7, of order 0(1‘2’ + 1)
_or, more precisely,

@,(x) = B(1;,..., 7 ) ()71 + 0¥ *2) (1.11)

where

B =23 g2+l (1.12)

Hence we have

17 - exp(B,(B)]| = |l - 1 - B,(B) - ,(B)/2! - ... |

< |2, (B)|(1 + 0)) <MB(1+ 6() = 6¢>*Y)

and, similarly,
llexp(~2,(B)) - 1| < M.B(1+ 0()) = 6(¢*"*Y).
Hence
lu - &) <MB(1+ 0(t) = 0E2*Y). ' (1.13)
For the phase error we have
@ = 2arcsin(fju — @||/2) = M,B(1 + 6()) = 6@*™*Y). (1.14)

Consider now some solutions of system (1.10) for different n. These solutions
define algorithm (1.5) for solving problem (1.1). In this algorithm the sequence of
time-steps is repeated cyclically with period n and by a certain rule. The time-steps
are proportional to a small parameter ¢, which is chosen from the conditions of local
approximation.

Consider some examples. .

(1) Let n =3, r=2. Choose 7;, 7, %, so that 7, = 7,. Then conditions (1.10) take
the form:

Thus, we have

t - 2t
cp=—t - V2t (1.15)
TRt esm P -9

i.e.

3
= -V-z-tl-
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It is seen from (1.15) that the step 7, is negative while 7, and z, are positive. Thus,
for problem (1.1) with a skew-symmetric operator, the scheme has the phase error
0(15) and is absolutely exact with respect to the norm.

Check numerically scheme (1.5) with parameters (1.1S5) for the problem with a
2x2 skew-symmetric matrix:

du |0 -1 1
d_l‘l=[1 o}#(t)’ !"(0)=[o]'

The differences between the exact solution of this problem and the solutions obtained
by the method with constant steps 7, =7,=17,=r/6 and the method with step
sequence (1.15) are listed in Table 1 for different ¢.

For this scheme Figure 1 shows graphs of e™ and R,(2) for real z: ™% (curve 4)
and its approximation R,(z) (curve 1). Figure 2 shows real and imaginary parts of
e and Ry(z) for pure imaginary z: cos y (curve 4) and its approximation Re(Ry(2))
(curve 1), siny (curve 8) and its approximation Im(R4(2)) (curve 5).

In the general case, when n 3 3, for finding 7. we use the following method: let

Trees O, =Th..T,

S =3 ¢k

=3 7,

(4 =1 i

Table 1.

t Constant-step method Variable-step method

0.2 7.4x105 2.0x107°

0.1 9.0x10°¢ 1.0x1076

0.05 1.157x1076 2.107x10°8
3.0+
2.0

1.0;; N 2
0.0+ < 3
3 4

1

Figure 1.
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Consider the system of r equations:

§;=1, 8, ,=0, k=2,.,r. (1.16)

For r<n -1, some 7, in (1.16) may be considered as free parameters.

Using Newton’s formulae we express the values of Sk interms of g, i =1,...,n,
to obtain an equivalent system of equations for g, i=1,...,n. Having solved this
system we find the roots %, i =1,...,n, of the equation:

x”—x”'1+02x”‘2f...+(-1)”a'n=0. (1.17)

Then 7, =xt/2 and the coefficient B, in the remainder term in (1.11) is explicitly
defined in terms of a;:

_ 2‘g2r+1[ t ]2r+1
B=miilz (1.18)
(2) Let n = 3; then we find from (1.16) that
o,=0;+ 3%, S=1%(50,-2). (1.19)
Thus, equation (1.17) has the form:
x3—x2+(o3+ %)x—a3=(). (1.20)

Imposing the requirement that two roots of equation (1.20) be identical, we obtain
solution (1.15). Now let r=3 then according to (1.19), Ss=0, i.e. 6,=2/5 and
0, = 1/15. Subject to these conditions, the roots of equation (1.19) are

x, = - 0.1236886881517035
(1.21)
X, 5 = 0.5618443440758517 +0.472563881923747 ..

In addition, we have $; =1/ 152, i.e. according to (1.7), B, = t7/(7x120%).

For this scheme Figure 1 gives a graph of Ry(z) for real z: Ry(x) (curve 2).
Figure 2 gives real and imaginary parts of Ry(z) for pure imaginary z: Re(R4(2))
(curve 2) and Im(R,(2)) (curve 6).

1.57
1.0 Se
b 5
0.5
0.04 ' )
] 43
-0.57 2
- 1.0}

02 00 02 04 06 08 10 12

Figure 2,
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(3) Let n = 4. We find from (1.16) that
o,=% +30,, o3=4%+3q,, S=%(-79).
Thus, equation (1.17) takes the form:
=23+ (% +30)x% - (& +30)x+0,=0. (1.22)

Let r=4, then 8, =0, hence o, =3/7, gy=2/21, g, =1/105. For these values the
roots of equation (1.22) will be complex conjugate:
X, 5 = 0.3168675194685621 + 0.0948820251422306 i
’ (1.23)
x5 4 = 0.183132480531438 + 0.23132522602625101i

and Sy = -1/11025, i.e. B, = -19/12602.

For this scheme Figure 1 illustrates a graph of Ry(2) for real z: Ri(x) (curve 3).
Figure 2 illustrates real and imaginary parts of Ry(z) for pure imaginary z: Re(R(2))
(curve 3) and Im(Ry(2)) (curve 7).

The following theorem is known (see, for example, [1]).

Theorem 1.1. The only rational function with the power of the numerator equal to
k and the power of the denominator equal to m that approximates the exponent e~
with an accuracy of @(m + k) is the (k,m) Pade approximation of the exponent:

& _K_ (m+k-i) (-z)
_ =0 (k=D (m+k) il

o & _ml_ (m+k-i) @
i=om-=i! m+k)

(1.24)

Therefore, when 7 =r, transition operator (1.6) approximates the exponent with an
accuracy of 2n, i.e. it is identical with the (n,n) Pade approximation; hence the
parameters x;, i = 1,...,n, are the roots of the equation:

kKl (2k-i) (—2x)k"i .
=0 (k-i)! (2k) i

(1.25)

For n =3 and n =4 the parameters x; are given in (1.21) and (1.23), respectively.

The schemes with parameters (1.21) and (1.23) lead to complex time-steps.
Therefore while implementing the transition operator R (A4) (1.6), different
approaches are possible. For example, one can perform calculations in complex
numbers or, taking into account the fact that the factors in (1.6) commute with one
another, one can combine complex conjugate operators into a single operator and
implement it in a real space.

¢
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2. CONSTRUCTING FOURTH-ORDER ACCURATE METHOD FOR A SYSTEM
OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Let us consider an s-stage Runge —Kutta method for a system of ordinary differential

equations with a sufficiently smooth right side:

d
3 = S0 2.1)

: S .
Yi= ¥, *+ hjglaijf(Yl,tn + cjh), j=1,...,s

(2.2)
s s
Ype1=Y, * hj;ibif(}",t" + c‘h) .
Method (2.2) can be represented schematically as a Butcher table:
C.1 a}1 c. “1:
' : : or ¢| M 2.3)
G lay - - - a .
b
by ... b

where b = (bl,bz,...,bs)T, c= (cl,cz,...,cs)T, and M is the matrix with elements a;.
Harrier and Wanner [2] showed that for the order of accuracy of method (2.2) to

be p it is necessary and sufficient that the parameters of the method satisfy the
relations:

p=1 (W@Zb=1, B)g=Za
J

1
p=2 (Z)Zbl-alj_; Zb,C,=‘i
(2.4)
1
@) She?=3, @) Zhaa =3

o
n
w

1 1
p= 4 (5) z bl-Ci3 = Z) (6) Z blclaljcl = §

1
() Zhact= 75, ) Thaaa,= 55

In Section 1 we constructed a series of methods, which, having been'combined,
yield a phase error of order O(h9*1), where q=4,6,8, and retain the norm of
solution for problem (1.1). For linear homogeneous problems the order of accuracy qf
these methods is p =q. However, for problems of the form of (2.1), due.to their
being inhomogeneous and non-linear, the order of accuracy of the methods is 2. We
will construct a fourth-order accurate Runge - Kutta method that retains the norm of
solution for problems of the type of (1.1), the so-called P-stable method [6].
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The stability function of an s-stage method is a rational function in which the
numerator and denominator are polynomials of degree no greater than s. The
stability function can be expressed in terms of the parameters of method (2.3) by the
formula [1]:
det(1 -zM + zebT)

det(1 -zM)
where e=(1,1,...,1)'r is the s-dimensional vector. It is seen from (2.5) that for
small z

R2)=1+b(I-zM) le= (2.5)

R(z)=1+ .°z°0 bTMiezi+1. (2.6)
j= .

For the method to be P-stable it is necessary that for z = ii, 1 € (- », ®),
|R(z)| = 1. 2.7

While constructing method (2.2) we consider R(z2) to be of the form:

1+ i dizi l'£l (1+ a;2)
i=1 i=1
R(2) = . - = (2.8)
1+ 3 d-2) 112
= l=

where @;=a;, i=1,...,s, then & will be symmetric functions of a;. ,
It is seen from (2.5) that the roots of the denominator R(z) are eigenvalues of the
matrix M. In the sequel, we will construct Runge - Kutta methods for which a.=0 at

i <J, i.e. the matrix M is lower triangular. Hence for (2.8) to hold it is necessary that
a;=a;,i=1,..,s.

The product R(z)[T_,(1- @;z) is a polynomial of the third degree. The
conditions to be imposed on the method parameters for the stability function to have
the form of (2.8) can be found by using the equality

R(2) ’le (1-a,2) - iljl (1-a,z)=0.

Substituting expansion (2.6) in the equality and equating the sum of factors in the
equal-degree terms to zero, we obtain the relations

Sha; - Thd, =0
(2.9)
2.ba;a) -~ T bad, + Thd,-2d;=0

‘2baaya, - 2ba;a,d, + Zbad, - Thd, =0. -
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It follows from relations (2.9) that for the stability function to approximatc the
exponent with the fourth-order accuracy and to be of the form of (2.8) it is necessary
that conditions (1), (2), (4) in (2.4) and

s 1 s s 1

§ -2 2dy—dy = 21<Jz<kauaj]akk E]aix‘fy =712 (2.10)
be fulfilled. Note also that equations (2.10) give a monoparametric family of solutions
of system (2.9) and a unique solution exists, which coincides with the (s,s) Pade
approximation, for which the stability function approximates the exponent with order
2s. However, in this case we obtain complex-valued parameters &; and to avoid
calculations with complex numbers we choose the parameters d; so that a; be real. If
we put @, =%, i=1,...,5, s =3, where 7, are taken from (1. 15) then relanons (2.10)
will hold. Moreover, xf relations (1), (2), (4) in (2.4) hold then (8) in (2.4) will also
hold. The remaining parameters of the method will be found from conditions (2.4). In
this case there are nine equations in eight unknowns. Nevertheless, in the case under
consideration there exists a solution for which all relations (2.4) are satisfied.

Let a; = ay, = 7}, a33 = 7, Where 7, are taken from (1.15). Then

¢, =ay (2.11)

b, will be a parameter, and the remaining b, and ¢, i = 2,3, will be found from
relations (1), (2), (3), (5) in (2.4): ‘

b2+b3=1—b1=f1
b2c2+b €3 = 1- blc1 f2
2 2 _ 2
b2c2+b3c3—1—b101—f3

b2c2 +b3c3 1- blc1 f4.

The solution of the system has the form:

“hEvh—4

€3 = > (2.12)
where
_ ~fy +hfy [ = ~hfathha b= fe=h fz by = h-he
- LA O v 2T e - —c. '
hf=5 -5 =6 37
Parameters a5, and a,, are found from the linear system of equations: '
1
by a3y + byCasy = G ~ D333~ Z b.‘)“q ¢
Ay +a3p=C3=ap = ¢, (2.13)

Akl Smakh
317 bye,-cy)” 2 byley—ey)
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Parameters (2.12) and (2.13) define a family of the schemes that depends on the
parameter b;. Let us consider some of these schemes.

For b, =0 the order of accuracy of the method is 3, however, its parameters
satisfy relations (5), (8) in (2.4). Hence for some classes of problems the order of
accuracy of such a method is 4, for example, for problem (1.1):

0.67560359597982 0.67560359507982 0 0
0.21132486540518 | -0.46427873057464  0.67560359507982 O (2.14)
0.78867513459481 1.78558235476376  ~0.14570002820920 - 0.8512071919596

[ o 0.5 0.5

For b, = 0.67296857785705738 all relations (2.4) hold and the order of accuracy of
the method is 4:

0.67560359597982|  0.67560359597982 0 0
0.10314973700795 -0.57245385897187  0.67560359597982 0 (2.15)
1.85120719195965| -7.9733975367139  10.6758119206332  -0.851207191959%

| 0.67296857785705  0.3203915925434 0.00663982959946

In conclusion, let us write down convenient design formulae for problems of the
form:

z—t = Au + f(t). (2.16)

To obtain a solution of problem (2.16) by formulae (2.14) or (2.15), we solve s
(s = 3) equations of the form:;

(I - ha A)Y‘ i=1..s, s=3
where

F = +h2a(AY1+f(t +ch))+ahf(t +h)

S ,
Sue1 =+ b 2 BAY' 4 it + ).

3. NUMERICAL SOLUTION OF DIFFRACTION PROBLEM
Consnder the followmg problem:

oF 3%F -
E Kax » z€(0,Z], =xe(-1,1) 3.1)
F|z= o = Fo®) ‘ (3.2)
lieeqy = Fli, = 0. (3.3)
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Equation (3.1) occurs in studying the diffraction of a plane electromagnetic wave
on a slit. In this case Fy(x) is the amplitude of the wave incident on the screen,
F(x,z) is the amplitude of the diffracted wave at a point (x,z) behind the screen, k is
the wave number (k =27A, where 4 is a wavelength). It is assumed that the slit
(-d,d), where 0<d <1, is at the centre of the screen [-1,1], the wave is incident
normally to the screen, the screen and the slit are infinitely long; the slit is allowed for
in the initial condition, namely in the function F (x).

The solution of problem (3.1)~(3.3) will be sought by using the finite difference
method. To this end, we first of all construct a second-order accurate approximation
to this problem with respect to x. Let X, i =0,...,V, be a uniform grid with step 4 on
the segment -1<x<1: %=-=1+ih, h=2/N. Then, taking into account boundary
conditions (3.3), we arrive at the following difference-differential problem: -

OF _i4F (.4)
0z
Blo=F 3.5)

where A is the tridiagonal matrix, while ﬁ'(z) is the vector function defined at the
nodes of the grid x;:

-2 1 F(2)
A=;§ 1... -..1, Fz) = . E@)=Faz. (3.6
o . = n
1 -2 Fy_12)

To solve problem (3.4), (3.5).we apply the Crank - Nicolson-type difference
scheme: .
Fitl _Fi

ki

where F/ =ﬁ’(z‘.) is an (N~-1)-dimensional vector, while T are variable steps over z,
which will be considered complex: T=1;t itzj.

Then, to find F/*! we obtain a linear system of algebraic equations with the
tridiagonal matrix

=JiAEILF), PO 3

AFI*Y = AF) (3.8)

where A =1 - %itA (1 is the (N-1)x(N-1) identity matrix) and the overscribed bar
denotes a complex conjugate. ] ) . )

Let F(x,z) = u(x,z) + iv(x,z) and F/ =uf + iv/, where u/ and v/ are the vectors of
dimension N — 1. We will solve system (3.8) by using only real numbers. In this case
at each step, a solution is sought by the formulae:

Djuj +1- Bjuj + ijj (3.9)

V=4 Sl -ud)  fah DA ) G0
1j ) '
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0.163 0_20?
012] 015
°'°8-'§ 0.10-5
°-°4'i o.os-i
5 "
0.00; 00] -
miﬁtid"hs’"bd"bs‘"'us"'f.s S TR s
Figure3.
where | |
D=I+ oA+ dafrgpal, B=I-fa At G= g

(3.11)
u%=Re(F?), v0=Im(F?).

Numerical calculations were performed for K = 100, 4 = 0.3, and

ek xe(-dd)
Fy(x) =
0, xe[-1,-d]v[d,1].

To reduce the phase error, a scheme with four complex steps over z was used, the
steps were chosen by formula (1.23), where ¢ = 1075, The results of the calculations
are shown in Fig.3 in which the wave amplitudes are plotted on the ordinate:
I(x) = |[F(x)|?,

System (3.9) with a pentadiagonal matrix D, was solved by a Thomas algorithm for
which the formulae are available in [S].
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