VARIABLE TIME STEPS OPTIMIZATION OF L, STABLE
CRANK-NICOLSON METHOD.

A. A. MEDOVIKOV* AND V. I. LEBEDEV

Abstract. We study the optimization of Crank-Nicolson method, also known as Euler second
order trapezoidal rule [4] for ordinary differential equations. The Crank-Nicolson method for the
numerical integration of the first order ordinary differential equations is A stable, but it is not L
stable. This means that the stability region coincides exactly with negative half-plane 2z : Rz <0,
but the stability function |R(z)| tends to 1 rather than zero as Rz — —oo. This causes unexpected
oscillatory behavior of the numerical solution of stiff differential equations. In order to avoid this
problem, we optimize the stability property of the stability function. Variable steps within the
sequence of steps by Crank-Nicolson method allow us to obtain different stability functions and
formulate optimization problem for roots and poles of the stability function. The optimal solution
of this problem is the classical rational Zolotarev function. The appropriate selection the sequence
of step-sizes eliminates oscillatory behavior of the numerical solution.
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lem

AMS subject classifications. 65M12, 65L06, 41A20

1. Introduction. We consider Crank-Nicolson method, also known as Euler
second order trapezoidal rule [4], for solving stiff ordinary differential equations, which
may arize as the result of descretization of parabolis partial differential equation.
Under appropriate smoothness assumptions, the Crank-Nicolson method has second
order accuracy. But for stiff ordinary differential equations, the numerical solution
can be very different from the solution of the exact problem. We demonstrate this
with the example of heat equation,

ou 0%u
(].-].) E —_ ﬁ’
u(z,0) = u’(2),
u(0,t) = u(1,t) =0,
where z € [0,1] and ¢t > 0.

The exact solution of this problem can be found by the method of separation of
variables [15] as,

(1.2) uw(z,t) = Z cre Moy (),
k=1

or(x) = V2sinkz,

where

— 0 — 0
o= (@) e @)s = [ W @)pn(z)ds
0
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lu(z, )I[7, = 202 AL

Because eigenfunctions are normalized ||¢g (z)||z, = 1, we can obtain a bound on the
Ly norm of the solution

o0
lu(z, 1)1, < e MY = e M [u(2)[[7,,
k=1

or

(1.3) lu(z, D)z, < e [u’(@)]]L,,

for any ¢ > 0. Because Ap+1 > A the harmonics corresponding to larger k decreases
faster. Thus for sufficiently large ¢ we can make the approximation

(1.4) u(z,t) ~ cre Mgy (x), ¢ #0,

for sufficiently large ¢. In order to approximate (1.1) we use method of lines with
uniform grid Az = 1/(n + 1). We divide the interval [0, 1] by n points {z;}} and use

method of lines [8] to approximate heat equation. Now the values u;, i=1,...,n
are solutions of semidiscretization of the heat equation (1.1) at points z; = iAz, =
1,...,n, which satisfy system of n ordinaty diferential equations

dui 2 .
(1.5) E:(ui+1—2ui+ui_1)/A:c ,i=1,...,n

This is homogeneous system of linear ordinary differential equations

du

— = —Au, u(ty) =u’

dt  ulto)

where A is n X n three diagonal matrix with elements a;;+; = —1/Ax? and a;; =
2/Ax?. The matrix A has complete set of eigen vectors and eigen values

4 wAxk
Az __ .2
A = Az Tg
(p2®); = \/isinwk:ci,
Az = (y (pk: )a
v) = ZyiviAw,
k=1
Iyl = v, 9)-

We use superscript Az in order to indicate that eigenvectors, gokAw, and eigenvalues,
A% of the matrix A analogue of eigenvectors and eigenvalues of the differential
problem (1.1) obtained by finite difference approximation with spatial step Az. We
can use the method of separation of variables in order to find solution of the equation
(1.5)

n
A
(1.6) u;(t) = che)‘k LR,
k=1
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The eigen values A; have the following properties

4
Ax?’

If k > [(m+1)/2] the value Ap = A2 — AR% = A5%, | — \8F _ is decreasing when
k is increasing. Consequently, /\kAm are not grownig like eigen values of exact solution
of PDE 72k? for the large k, but we observe fast decreasing of the rate of grows of
A27. It means that A2® are not approximating 72k? anymore and, as time grows, the
appropriate terms in expantion of the numerical solution becomes unrealisticly large
and they can be considered as gurbage.

In order to reduce an influence of these terms we use special sequence of Crank-
Nicolson steps. Let us consider one step of of Crank-Nicolson method for solution of
semidiscret problem

Az Az —
AeT Ak =

i+l _ yi yiH 4 yi
= _4A ,
T 2
Y =u%2;), i=1,...,n

(L.7)

where 47 is a vector with components {yzJ »_; is the numerical solution of the problem

(1.5) after time step j at the point z;: y] = u(z;,t;). We can use the method of
separation of variables in order to find solution of the numerical scheme [8]

n
(1.8) v =) adler”,
k=1
where
_ 1-057AL°
= T+ 05mA8e

Using the fact of ortho-normality of eigenvectors (¢4, p%) = 6,

n
19117 =Y ckai’ < 21911,
k=1

or

(1.9) Iy’ Il < P 119°Il;
where p = max gk |-

Formall§ Crank-Nicolson method has second order accuracy if 7 approaches to
zero. But we want to analyze the solution for realistic values 7 typically used for
numerical computations. Properties similar to (1.3) and (1.4) for numerical solution
have the form

(1.10) y = y(zs,t;) = C1Q{901Awa ¢ #0.

Because gy, is a decreasing sequence, the condition (1.10) can be satisfied if |g1| > |gn |-
For example if

2

(1.11) T <Tp = ,
’ nM
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where v; and M maximum and minimum eigenvalues of the matrix A. In the example
of the semidiscrete heat equation (1.5) the step 7o = %. We call this an asymptoti-
cally stable numerical scheme. This problem have been widely discussed in literature
e.g. [12, 3, 5].

If condition (1.11) is not satisfied, the numerical solution can be destroyed by
modes corresponding large k.

Because gy, is approximately —1 for sufficientlt large 7 and k the Crank-Nicolson
method increases relative fraction of garbage components, especially for nonlinear
problems. This circumstance can change solution dramatically for ¢ — oo, and that is
why we choose special sequence of steps to remove garbage components rather than
approximate them.

The difference between the numerical and the exact solution is shown in Fig. 5.1
(c). Variable time steps [10, 9, 14, 13, 1] allow to improve stability of the explicit
methods. In this article we propose the algorithm which uses Crank-Nicolson method
with variable time steps. The special choice of the sequence of steps increases the
average step size of the Crank-Nicolson method while preserving the property of
asymptotical stability (1.3), (1.4).

2. Crank-Nicolson method for nonlinear equations. We analyze numerical
solution of the system of ordinary differential equations

dy _

(2.1) - =

fy, ),

where y and f(y,t) are vectors of the length n. We define one step of the numerical

method as a result of m steps of the Chrank-Nicolson method. The total step size,
m

which is the sum of steps of each individual method is 7 = ) h;. The composition
i=1

of these steps can be considered as a composition Runge-Kutta method

=y ,

(2.2)  oitl = vﬂ+hj+1f(zhk+’”2¢,““%“>, j=0,...,m—1
k=1
yto= o™, =141

We mainly restrict our consideration to the case of functions f(y, t) with the Jacobian

of1(y.t) 3f1(y,t)
Bt .. B
J(x1,y. . ) = : . :
Ofn (y,t) Ofn (y,t)
Y1 T Oyn

satisfying the following conditions:
1. J(u,t) has set of eigenvectors {p;(t)}? and eigenvalues {\;(¢)}} for all ¢,
which form complete basis in R,
2. the eigenvalues are real A\; = R\,
3. the solutions of two equations

dy
E - f(yvt)a

dz n o an n gn n
azf(y 7t )+J(y 7t )(Z—y )7
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satisfy ||y(t) — z(t)|| < C73 uniformly for ¢ € [t",#"*1]. Here C is a constant,

independent of ¢, and ||y(¢)|| = max = max lys(t)].

In order to prove second order accuracy of the methods (2.2) we use the theorem
which gives us an estimation of the global error of the numerical method after m steps
([4], I1.3 pp.160-161)

THEOREM 2.1. Let U be a neighborhood {(t,y(t))|to <t < t1} where y(t) is the
exact solution of the (2.1). Suppose that in U

of of
—||<L —)<L
ISl <D oruzh <L,
where p is logarithmic norm and that the local error estimates ||e;|| < C
in U. Then the global error can be estimated by

1 .
h? 1 are valid

1511 < 1S (exp (Lt — to)),

where h = max h;,

o_1c if A>0,
~\ Cexp(Ah), if L<0.’

and h is small enough for the numerical solution to remain in U. For L — 0 the
estimate tends to h?C(t; — to)

Because the method (2.2) is just a sequence of steps of Crank-Nicolson method
with p = 2 and h < 7 = (t; — to) the error estimate becomes ||E|| < C73, which
proves the following theorem.

THEOREM 2.2. Suppose that ordinary differential equation 2.1 satisfies conditions
from the previous theorem, then the method (2.2) has second order accuracy

ly(t1) — | < C7°,

m

where T = ) h;.

In ordér %co formulate optimization problem, we use linear stability analysis. We
consider homogeneous system of linear ordinary differential equations
du
dt
where the matrix A is the Jacobian —J(y™,t"). We use the fact that the linearized
equation (2.3) approximates the non-linear ODE equation on the interval [t",t"T1].
The difference of the solution y™ and disturbed ™ solution u = y™ — y™ of the linear
ODE (2.3) satisfies (2.4) and we can use this equation in order to investigate properties
of the numerical solution. As before, we assume that eigen values \; € [0, M], where
M = sup; A;, and eigenvectors ¢; form basis in R",
o 1l-w
S ltw
Now we suppose that we know value h, which guarantees predefined accuracy of the
method (2.2) for m = 1. We use the method (2.2) for solution of the problem (2.4)

(2.4) —Au, u(ty) = u,

(2.5) h; >0, h=maxh;, 9§ , cou=2/M.

m

(2.6) u' = [T +0.50;A) 7 (I — 0.5h; A)u’,
(2.7 T=7(M,w) = ihi.

i=1
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We shall compare the expansions for numerical and exact solutions. The expansion
for the numerical solution u!' and u°

- 1 — 0.5\ -
(2.8) ut =) ¢ (H m> ©; = ciRm(X)e;,
j=1 i=1 e j=1
W =Y i
j=1
where
1 — 0.5,
2. m A) = PR~
29) Bn (M) 114050
(2.10) Rn(0)=1, R,(0)=7==> h;, hi>0
=1

and the expansion for the exact solution of (2.4) is
n
(2.11) u(r) = che_)‘”cpj.
=1

If we compare (2.11) and (2.8) we can see that scheme (2.2) better approximates
modes with small eigenvalues \;. If steps {h;}7* are too large the approximation of
modes with large eigenvalues ); is very different from the exact solution, because
R, (A;) can be close to £1, but the exact solution for these modes close to 0. That is
the reason of the oscillating behavior of the numerical solution shown in Fig. 5.1 (c).

3. Stability function of the Crank-Nicolson method. In order to avoid
this problem we choose steps {h;}7*, such that stability function be less than some
predefined parameter 1 > w > 0. But the function (2.9) equals to one R,,,(0) =1 > w
in the origin and it approximates exponential function, which means we can not make
it less than w on the whole interval [0, M]. At the same time the function R,,()\)

is monotonically decreasing and equals zero at mai ;- Lhis means that there is

where R, (7) = w. We will construct

a point v within the interval [0, —2—],

i=1

rational function, such that it stays within the interval Rp,(\) € [—w,w]if A € [y, M].
DEFINITION 3.1. We call the function (2.9) L, [0, M] stable if h > cou and the
function Ry, (X\) is monotonically decreasing non-negative function in [0,~] and

(3.1) w> max |[Rn(A)|, 1> max |Rn()\)| > w,
AE[v,M] A€[0,7]
where 0 <w <1, and 0 < v < M.

We use term L, [0, M] to outline similarity with L stability of Runge-Kutta meth-
ods. Now we are ready to formulate optimization problem for construction L, [0, M]
stable method (2.2): Given m, w, let us define h = h(m,w) as a maximum possible
value when inequalities (3.1) are still valid. And let us define 7 = 7(m,w) = maxh.

K3

Now, we can change variables

(3.2) z2=AM, z=h2M, n=v/M, 0<n<1, z=h/2M),



Variable time steps optimization of L, stable Crank-Nicolson method 7

so that function (2.9) becomes

(3.3) Ron(2) = ﬁ 1= 2z

1422

i=1

Let us consider two simple cases.
1. Let m = 1. We can determine z from the equation

1-2z
1 = = —
Rl( ) 1 +z w,
and Z becomes
1 - cou cou
.4 7 = — e — e
(34) A

where § has been defined in (2.5). The value 7 can be found from the equation

(1—2zq) _
(1+z7) “
(3.5) =062, 7=6M.

Consequently, we can use the method (2.2) if h < h = h(1,w), m = 1, hy = h, and
T=7(l,w) = h. B
2. In the second case m = 2 the function R»(z) becomes

_ 1—pz +¢?2?
3.6 R = ——
39 (o) = LT

where p = (21 + 22),¢%> = 2122, and we can find 2z from the equations

in R = Ry(3)=-—
Join _z(Z) 2(%) = —w,
Rz(l) = Ww,
and % = 1/¢ because R, (Z) = 0. In this case the first equation becomes (2¢ —p)/(2q+
p) = —w, and p = 2¢/d. Making use of the second equation, obtain quadratic equation
for p
@ —2q¢/0°+1 = 0,
2 2
%—(l—kw)p—}—l—w = 0.

Where the solution of this equaton is

g = (L+v1-5%/8,
P o= HES((1+w) +2y/2(1+w?)),

and p=2(1++v1-0%)/8%, 2 =2 =p(1 +V1—=482)/2, 22 =p(1—+/1-62),and h

becomes

(3.7 h=hy = zicou, hy = zacou, T = 2pcou.
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Similarly, the value 7] satisfies the equation (7jq)? — 2(7jq)/6%> + 1 = 0 and 7jg = (1 —
V1 —4%)/4?, and finally

(3.8) i = &M1+vVI=-0%)2

So, we have shown that we can use method (2.2) if A < h(2,w), m =2 and h = hy.
Now, let us consider possible cases in more details. Let A is a root of the equation

(;Zﬁﬁ)z = w, then we can take h; = h and hy as a root of the equation ijr,’:AMlg .
ilﬁi%ﬁ- = w if h < h < h, and finally we have
2
7 2,w) > 7(1,w).

If h < h, we assume that hy = hy = h and we have @ > 7(1,w), h > h(l,w),
72(2,w)/2 = 7(1,w) if h < h(1,w).

3. Now we analyse the case m > 3, 7 = cou/h < 82 /((1 +v1 — §2)(1+ V1 — &%)).
Consider Zolotarev rational function dergree m

m —
1-2zz
. Z =
(39) m(2) gl+m,
where
2 - ) ]_ ! 7
(3.10) % =1/dn (%K(n),n>, i=1,...,m,

where dn(u, k) is Jacobi elliptic function, K (k) is elliptic integral, k is module, k' =

VI—k2, 5 =y/1-n% K' = K(k'), and nome ¢ = q(k) = exp(—n%).

For the further analysis, we need the following properties of the functions dn(u, n), K (k)

(3.11) dn(—u,n) = dn(u,n), dn(K(n),n)=n,
dn(u+K(n'),n) =mn/dn(u,n), dn(0,n)=1.

If k is close to zero we can use the following properties K (k) ~ 7/2, K (k') ~ In l;i,.

The values Z; ' are roots of the function Z,,(2), z;' € [p,1,n < z;' < 7' < ... <
Zl <1,z = nif m — oco.

The function Z,,(z) has Chebyshev alternation property of m + 1 points on the
interval [n, 1], and this is the function of the least deviation from zero among rational
functions (3.3), with the value of deviation from zero E,, = E,,(n). The appropriate
theorem was proved by Zolotarev [20, 6]

THEOREM 3.2. The rational function (3.3) degree m is the function of the least
deviation from zero

3.12 min max |R,,(A)| = En(n),
3.12) i, e[ (V)| = B (1)

in the uniform C[n,1] norm on the interval [n,1], 0 < n < 1, if and only if the
parameters of the function are (3.10).

This rational function has m + 1 points {2}, 0 < %; < %41 < 1 such that
R,,(2) equals its local maximum value E,, () with alternaiting sign

(3.13) R (%) = (=1)" " En(n).
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We will use this function for computation of the parameters of the numerical method
(2.2), so in order to clarify relationship between Zolotarev rational function (3.9)
and Zolotarev function for the interval [a, M] we provide the following definition Let
n = 35, where a is a positive value 0 < a < M.

DEFINITION 3.3 (2). We call the function (2.9) with parameters

(3.14) hi = hi(n,m) = h"/M, i=1,...,m,

where n = a/M and

(3.15) A= 2._12, — i=1,...,m,
dn (55K (n),m')

as Zolotarev rational function for the interval [a, M].

Because Zolotarev rational function is monotonically decreasing function in the
interval [0, \;] it satisfies conditions of L, [0, M] stability if w > E,,(1). Now we want
to find parameters 5 and degree m such that sum of steps satisfies (2.7), E,,(n) < w
and m as low as possible.

Because the function E,,(n) is continuous and monothonically decreasing function
of n, and E,,(0) =1 E,,(1) = 0, there are inverse functions § = 0, (En), n(0) = 1,
n(1) =0 and z; ' = z; }(E,). If we define

1/2

1-n K(m)
1 /2 _ 27" = /1 =42 — — —r
(3 6) 1% 1 771/2’ M1 Mo, q Q(/J’) exp( K( ) )

then

E,, = 2qm/4 H(l + qmn)(fl)"‘

n=1
And we obtain

2qm/4 2qm/4

m/4 2m
<Em<2q (1+¢*™)

< 2¢™/*,
1+qm/2—1+qm— — 1+ gm S g

(3.17)
Let 0 < w < 1,7 = nm(w),n < v < 1, and define Fy,(w,v) as a class of rational
functions (3.3), which satisfy 0 < z; <v~!,i=1,...,m, and max |Rm(2)] € w.

We use the following theorem in order to define algorithm for determination of
variable time steps.

THEOREM 3.4. sup IR, (0)| = —2Z,,(0) =2 S E.
Fpn (w,v) <<l
The formula for z; can be rewritten as follow

318)  a=1/dn (=GR ) = dn (5K ) o

or

1 ' 1

(3.19) =2 "gm(), gm(n) = g(n,m) = dn(3—-K(n),n)-

The function g¢,,(n) monotonically increases on [0,1] and ¢,,(0) = 0, gn(1) = 1,
9m' (1) = 0, gm'(0) = o0, gm(n) > 1, 9,(n) < 0if 0 < p < 1. The graphs of the
functions g3(n) and n are plotted on the Fig. 3.2.
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1 T
(a)
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F1G. 3.1. Rational function used by Crank-Nicolson method with constant step size h = Az(a).
Optimal Zolotarev function degree m = 3 for w = 0.5 and 7 = Az (b).

Because of monotonicity the equation (3.19) has only one solution on [0,1] if
m>3,0< 2 1 < 5. At the vicinity of this solution the following inequality holds
0 <z 'g,(n) <1. Given 0 < z;! = r = cou/h < 6 < 1,m > 3 we can use the
method of successive approximations in order to find 7 from the equation (3.19)

(3.20) " =rgn(n*), k=0,1,....
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Fi1G. 3.2. Function gm(n) and 7.

As an initial guess we can take upper estimate 7° = §2, or more precisely n° =
5*(1 + /1 —=6%)~2. The sequence n* converges monotonically from above to the
solution of the equation (3.19). The upper m; and lower m. estimates for the minimal
m, which guarantees that inequality F,, < w is valid, can be found by mean of the
inequalities (3.17)

2qm2/4
m1/4 — —
2q (N) = w, 1+ qm2/2 W,

or equivalently

C4lnw;K(p)  mi_ lnw

21 C=m = e
(3 ) m] m] (n) K (,U/1) ) mo In W

where w1 = w/2, w2 = w/(1+ V1 —w?).

Substitution of these values into equation (3.19) instead of m gives the solution
flj»j = 1,2, and finally we can find p;, 1, g; from the equation (3.16) and upper
and lower bounds for m. The estimation of the upper m; and lower ms bounds can
be improved by means of inequality (3.17), if we take value w; to be minimal roots of
the equations  2z(14+2%) —w(1+2*) =0, z*—2z/w+1=0. If value 7 is close to
zero one can use asymptotic formula for K (u), K (1) : K(p) = 7/2, K(p1) = In ﬁ,
and obtain
8lnw; ., 4

In —.
2 m

(3.22) mj ~ —
™
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The value of 7,,,(n) of Zolotarev rational function for the interval [Mn, M] equals
m
Tm(n) = > hi = om(n)cou = 20,,(n) /M, where
i=1

(3.23) om(n) = Zz = Z 1 ;» Tm(n) = om(n)cou.

So, let us estimate the value o, (7).
THEOREM 3.5. The value 0.,,(n) = om(n) of Zolotarev rational function for the
interval equals

_ % _ K;kaTﬂ
(3.24) om(n) = 0.5M; hi =m T
where . = \/1 — 12, Ko = K(kam), Ky, = K(ky,,), kam = /1 — (ky,, )2, where

kZm = nzm H Czr 1, where C, = = sn? (

elliptic smus
The value o,,(n) is bounded by

,n), is elliptic integral, and sn(z,y) is

qump

(3.25) 2= <1+ Z . )> > 0 ()

2n+1 2 !
—1)Pg2mp
> (144 VP ) (7,7),
2K'n = L+gtme(n)

for any n.
Proof. Let us consider expansion for the function (3.24) [19]

“ 2i—1_. )
= d K
;n ( o (n)m)

- = (=1)'d'(n') cos 24
z<2Kn an 1+q”(n)2 )

i=1

where nd(z,y) = (dn(z, y)) . Because of the absolute convergence of the series for
any q except ¢ =1, whenn =1 and =0, we can exchange sums over the m and [

oo m

T 2 21 —
Um(n) - <2Kl’l7m+ K’n Z 1 +q21 Z cos ) )

The last sum can be simplified using the property

2;—1 i
Zcos 1 I 0, }fl7é2pm p ..
— (=1)Pm, ifl=2pm, p=1,2,...
1=

oo

_ (.7 21 = (=D'd(M), . a
om(n) = <2K’nm " ;W(—l) m5l,2pm> =

2mm o= (—1)P¢>™?(y'
T ot 7rlmz( )*q (7)
2K'n K'n o= 1+¢"me(n)

(3.26)
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TABLE 3.1
The value 7(0.01)M/m = 20(0.01) and it’s estimate via the inequality (3.26) for even and odd
values n.

m=1 m=2 m=3 m=4 m=>5 m=6 m=T7 m=8
n=20 52.4334 | 52.4334 | 52.4334 | 52.4334 | 52.4334 | 52.4334 | 52.4334 | 52.4334
n=2 21.2558 | 44.9547 | 50.9464 | 52.1453 | 52.3778 | 52.4227 | 52.4313 | 52.433
n=4 20.0466 | 44.9444 | 50.9463 | 52.1453 | 52.3778 | 52.4227 | 52.4313 | 52.433
n==6 20.0017 | 44.9444 | 50.9463 | 52.1453 | 52.3778 | 52.4227 | 52.4313 | 52.433
M7= 001 20. 44.9444 | 50.9463 | 52.1453 | 52.3778 | 52.4227 | 52.4313 | 52.433
n=>5 19.991 | 44.9444 | 50.9463 | 52.1453 | 52.3778 | 52.4227 | 52.4313 | 52.433
n=3 19.7581 | 44.944 | 50.9463 | 52.1453 | 52.3778 | 52.4227 | 52.4313 | 52.433
n=1 13.4888 | 44.6663 | 50.9357 | 52.1449 | 52.3778 | 52.4227 | 52.4313 | 52.433

In order to estimate the last series we use expantion for nd(z, k) function

o T 27 — (—=1)7¢? (k) krz
MR = T ViR = TR R

If we set z = 0 and use property nd(0, k) = 1 we obtain

o« SRR
1 - k2K (k) 1- k2K (k) o= 1+ 77 (k)
or
o (=1)7g/ (k) 1-kK(k) 1
(3.27) ‘Ck) _ _1
I; 1+ ¢ (k) o 1
If we set g(k) = ¢*™(n') = —m 2K the left hand side of the expression (3.27)

formally equals to the last sum at (3.26). The nome ¢>™(y') = exp —m 2;?,[{ corre-

sponds to the second principal 2m*"* degree transformation ([2], p.214) with the ratio
of elliptic integrals ;?’" = 2m% and appropriate module ks,,. Consequently, if we

2m

set kg, = k and ko = \/1—kj,,” and K,,, = K (k) the (3.27) becomes

i VP () _ Kppkem 1
= 1440 () 2m 4’

which we substitute to (3.26) and finally obtain

o) = [T m s 27rlm Kypkom 1 _ mKQ,nkzm
2K'n K'n 2r 4 K'y

Because q(1]' ) is always positive the series (3.26) has terms with alternating sign, and
each even and odd term gives us upper or lower estimate for o, (1) respectively. O

The value 7, (n)M/m = 20, (n)/m (n = o) and an example of the inequality
(3.26) is provided in Table 3.
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Because computation of elliptic integrals is slow we can use approximation for the
steps via the formula [12, 16, 17, 18]

(1+26)(1 + 6%)

(3.28) hi(n,m) = G2 (1 4 6o 1 8o ) il i=1,...,m>1
2
(3.29) h(n,1) = ifm=1,
VM
where 0 = £n?(1+0.50%), 0 =221 ,i=1,...,m.

om(n)
mz1

Let us estimate the ratio of the average stepsize and maximal stepsize S =
Because values 1, K(n') are increasing and values 7, ¢(') are decreasing for a given
Z1 and increasing m, then the value S is decreasing. The upper estimate for 7, /h
can be obtained using inequality

- g ™ _
(3.30) Tm/h=mS < 2K(77')d”(ﬁK(771)a77’) =1In (2/w)p(w,n),
where
plw,n) = 2K )

K (p)K (0 )dn (g K (1'),n')

Numerical computations of this value gives estimate 0 < p(w,n) < p(w,0) < 0.33 +
5.27w, and finally we obtain

(3.31) Tm < (0.35 4 5.25w) In (2/w)h.

Now we can formulate optimizatin problem. There are several possible formula-
tions. In the first approach, we consider Runge-Kutta method (2.2) which is composed

m
of several internal steps. And given maximal sum of internal steps T =7 = D h;
1

we find appropriate m and sequence of internal steps {h;}7* in order to garantee
Lomegal0, M] stability. Plus, it is reasonable to fund such m that for given 7 amount
of computational work in the Runge-Kutta method (2.2) to be as low as possible,
which means that we want the number of stages m to be as small as possible:

Given T and 0 < w < 1, find minimal m and sequence {h;}* which satisfies (2.7)
such that the function (2.9) is L, [0, M] stable.

Another approach, which we adopt here, is based on the fact that the error of
approximation can be evaluated in terms of the maximal step size h = max h;, and

given maximal sum of internal steps 7Tp,q2, Wwe can take 7,4, = maxh;. In this case
1

we formulate the optimization problem as following

Given h and 0 < w < 1 find minimal m and sequence {h;}* such that the function
(2.9) is L,[0, M] stable and T is as large as possible.

We search for solution of this problem in the class of Zolotarev rational functions.

The method (2.2) has order o(72). Suppose we can estimate maximum possible
step Tmaz Which assures predefined computational error. Several methods can be used
for evaluation 7,44, but we do not discuss this issue in this article. We prefer to use
step size estimation technique based on embedded formulas [4, 5]. Given 7,4, we can
find optimal parameters m and 7 of Zolotarev function. In order to do that we can
use two equations

(3.32) Zicou =h
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(3.33) Ep<w

Starting from m = 1 we solve the first equations for 7, then verify the second condition
(3.33). If it is not valid we take m + 1 and use the same algorithm. As soon as
m and 1 have been defined we can find sequence {h;}™,, which defines L, [0, M]
stable method, which has maximum mean step size 7/m in the class of Zolotarev
rational functions 3.14. The steps {h;}*; are enumerated in descending order. But
for practical reasons it is better to change the sequence of steps in order to make a large
step followed by a small step. In this case the intermediate stability function obtained
after several steps, rather than complete sequence of steps, can possess Chebyshev
alternation or almost Chebyshev alternation [12]. This new enumeration is better
for solution of nonlinear problems as well as linear problems with time dependent
matrix A = A(t). In order to obtain such optimal order of steps one can use principal
transformation of elliptic functions. We show only idea of the enumeration algorithm.
Let m = 3n, then Z3,(2) = Z,(2)Q2n(z), where Z,(z) is formed by parameters
2(m —14) + 1 which are divisible by 3. This is the first group of parameters. If n is also
divisible by 3, we continue similarly by extracting second group of parameters ans so
on.

4. Computation of parameters of numerical method. In the previous sec-
tion we have defined the algorithm of determination of parameters of the numerical
method (2.2). The implementation of each step of the method (2.2) is the same as
implementation of Crank-Nicolson scheme, which is widely described in the literature.
In this section we consider algorithm for the fast computation of the variable steps of
the method (2.2).

Suppose we have some estimation for the value M and total step-size of the
next step of the method 7,,4,. Estimation for M can be obtained by several methods
including direct computations, norm evaluation of the Jacobian matrix, via Gershgorin
theorem or non-linear power method proposed by B.P.Sommeijer, L.F.Shampine and
J.G.Verwer [14].

Let us describe the algorithm of comutation of steps h;. If m = 1,2 steps are
defined by the formulas (3.4), (3.7). Now we consider the case m > 3,7 = cou/h <
3/((1++v1-262)(1 ++/1—4%). Firstly, we find m; from the system (3.32) and
(3.33), with initial guess n° = d*(1 + v/1 — 6%)~2. The iterates m**' n**1 can be
calculated using the following strategy: given n* define u*, u1* (3.16) and

mitt =mi(n*), 9t =rg(n* mitt)

Secondly, we define my using similar approach. After m; and ms have been
defined we have few numbers from the interval [ms, [m1] + 1]. By solving (3.19) using
iterates (3.20) we find minimal m and appropriate n for which conditions (3.4), (3.7)
are valid. Then given m,n we obtain z; and h;, which are enumerated in descending
order, and estimate (3.30) for 7, (n).

We use algorithm described in the previous section to determine degree of Zolotarev
function m and steps {h;}%,. In the theorem 2.7 we derive expression 7,,,(n) in terms
of elliptic integrals. But computation of elliptic integrals is slow and that is the reason
we use approximation for the steps via the formula (3.29) and (3.29) [12, 16, 17, 18].
As soon as steps have been calculated the verification of the second inequality in
(3.33) is also simple, because the value E,,(n) = |Rpy(M)].

5. Numerical experiments. We conducted a numerical experiment computing
the heat equation (1.1) via method of lines (1.5) with initial and boundary conditions
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below

0, 0>z2>1/3,
(5.1) w(z,0)=<¢ 1, 1/3<z<2/3,
0 2/3>z>1

u(0,1) =u(1,¢) =0

We compare results of computations by m = 3 steps of Crank-Nicolson method with
constant step size 7/m Fig. 5.1(c) and the results of computations by numerical
method (2.2) with appropriately chosen number of stages m and steps (3.29) presented
on the Fig. 5.1(d). with parameters n and m satisfying

T=Ar = Zhi(a,M,m),
i=1

w > |Rm(M)|

The dash line on the Fig. 5.1(c) and Fig. 5.1(d) is an exact solution of the
heat equations. The comparison of the solutions Fig. 5.1(c) and Fig. 5.1(d) clearly
demonstrates that oscillations of the Crank-Nicolson method with the constant step
size disappears in Crank-Nicolson method with optimally chosen variable steps. The
plot on the Fig. 5.2 shows the decay of Fourier coefficients for method with constant
steps Fig. 5.2(b) and optimally chosen variable steps Fig. 5.2(c). Comparison
of the distribution of Fourier harmonics of initial values Fig. 5.2(a) and constant
step solution Fig. 5.2(b) shows that high harmonics are not decaying properly, but
solution with variable steps shows decay of the large harmonics as it should occur for
the exact solution of the heat equation.
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F1Gg. 5.2. Distribution of coefficients ¢y, of initial value (5.2) (a). Distribution of coefficients cg,
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