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Abstract.

This paper discusses explicit embedded integration methods with large stability do-
mains of order 3 and 4. The high order produces accurate results, the large stability
domains allow some reasonable stiffness, the explicitness enables the method to treat
very large problems, often space discretization of parabolic PDEs, and the embed-

ded formulas nermit an efficient stensize control. The construction of these methods
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is achieved in two steps: firstly we compute stability polynomials of a given order
with optimal stability domains, i.e., possessing a Chebyshev alternation; secondly we
realize a corresponding explicit Runge—Kutta method with the help of the theory of
composition methods.

AMS subject classification: 65L20, 65M20.
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1 Introduction.

The aim of this paper is to construct explicit Runge-Kutta methods with a
large stability interval along the real axis. Such methods are frequently called
Chebyshev (I1.JI. Ue6numes) methods and are usually used with orders one and
two. In this paper we shall derive such methods of orders three and four. Typical
applications of such methods are mildly stiff ODEs arising from a semidiscretiza-
tion of a parabolic PDE.

We write the system of ordinary differential equations as

d
(1.1) d!: (t,9), Yle=to = Yo,

and solve it by an explicit Runge-Kutta method,
' i-1
Yi = yo+h}) aijf(te+cih,Yj),

(1.2) i=1
n Yo+ h Z:lbjf(to-i-c,-h,Y,-).
J:
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The coefficients of this method are usually displayed as

0} 0 0o ... 0 0
Co | Q21 0 PR 0 0 3
) C3 {aG31 Qs ... 0 0 cl A
Cs [ Qg1 Qg2 ... Qg5-1 0
1 bl b2 R ba—l ba
where ¢t = (0,¢cp,¢3,+,¢,), bt = (by, ..., b,).

For the stability analysis we apply method (1.2) to the test problem

(1.4) ¥ ==Xy, yl = Yo,
. t=tg

for which the numerical result becomes

8—1
(1.5) y1 = R;(Ah)yo = (1,+ thAie(—)\h)‘+1) Yo,

=0

where e = (1,...,1) and R,(2), z = Ah, is the stability polynomial (of degree
8). The region U = {2 : |Rs(2)| < 1} is called the stability region. We are
specially interested in the largest interval on the real axis I = [0,!] which is
contained in U and call it the 1 real stability interval. We will construct exphclt
methods whose real stability interval is as large as possible.

A first step is the computation of the stability polynomial, which, for an s-
stage explicit Runge-Kutta method of order p, must be of the form

-8
(1.6) Ry(z)=1-z+ ..+ (-1)P28/pl+ Y diz'.
t=p-+1

This follows from formula (1.5) and the order conditions (4.5) below. The op-
timal polynomial with maximal stability interval, however, has an undesirable
property: namely, at several places its absolute value is exactly equal to one.
For practical calculations it is desirable to introduce more stability by choosing
a value of deviating from zero <1 and by constructing polynomials such that

(1.7 max [Ra(0) <,

with | as large as possible. The value ¢ is necessary because of R,(0) = 1, (1.7)
is not possible close to ¢ = 0. We choose the values of 7 depending on the
degree s as 0.96 < < 0.985 according with an experimental table of Lebedev
(see [8]). First Chebyshev methods were proposed by Saul’ev (1960), Saul’ev’s
postgraduate student Yuan Chzao Din (1958), Franklin (1959), and Guillou



374 ALEXEI A. MEDOVIKOV

and Lago (1961), to solve semi-discrete parabolic PDEs. The optimal stability
polynomials (1.6) for order p = 1 are shifted Chebyshev polynomials

1- 17 v = T, (wo)
! T'('I.Uo),

R,(2) =

T( )T(wo w; z),

(see Figure 1.1). Formulas for the optunal stability polynomials of order p = 2
were derived by Lebedev in [9, 7).
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Figure 1.1: First (Chebyshev), second (Zolotarev, Lebedev), third and fourth order
polynomials and their stability regions.

The second step is the realization of the stability polynomial as a Runge-Kutta
method. Van der Houwen and Sommeijer [6] have proposed an elegant idea based
on the three-term recursion formula for Chebyshev polynomials, which can also
be applied to second order methods (see the review of Verwer [21] and the code
RKC by Sommeijer). Another idea, mentioned by Saul’ev (1960) and Guillou
and Lago (1961), is to represent the RK method as the composition of explicit
Euler steps. Lebedev [11] has extended this idea and uses the scheme

Yb = Yo,

Uisy = Yi+haiaf(4,Y5), tipy =t + haiy,

Ui = Uyy+hainf(tiyg,Uiny),  tin =ty +haiga,
(1.8)  Yin = Ui —hvinain(ftiny,Uipy) = £(8,Y5))

Uiv1 = vig1 (Uig1 — Wiy +Ys), i=0,...,8-1,
_ Ys, if s even,
Yo T Yoot + houf(te-1,Yem1), if s 0dd,
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with stability polynomials of the form

8/2
H (1 - aiz)? — v;a22, s even
Ra(z) = =1 [,/2]
(1—a,2) [T [(1 - @iz)? — v022%), sodd. -
i=1

In Section 2 of this paper we calculate the roots of the optimal stability poly-
nomials of orders p = 3,4 with the help of program BERN. This program is

described briefly in Section 3 and the articles [14, 10]. Then we construct in Sec-
tion 4 third and fourth order Runge-Kutta methods with the help of the compo-
sition method approach. Section 5 constructs embedded composition methods
for error control.

These methods have been implemented into the computer codes DUMKA,
DUMKAS3 and DUMKAA4. Section 6 presents some numerical results. It turns
out that the best applications for these programs are high-dimensional and not
extremely stiff problems, usually semi-discrete PDEs with eigenvalues of the
Jacobian matrix f'(t,y) = 8f(t,y)/0y in a narrow strip along the real axis of
the complex plane. For non-stiff problems the methods perform as usual 3rd
and 4th order explicit embedded integration schemes.

A problem, not addressed to in this paper, is the internal stability of the
constructed method. This problem is treated by Lebedev [11, 8] by a proper
ordering of the roots and parameters a; (see, e.g., the second edition of [3],
p. 33). Since we have found that most of the roots of the normalized optimal
~ stability polynomial (2.1) of order p > 2 are close to the roots of the normalized
Chebyshev stability polynomial of the same degree (see, e.g., the last s — p roots
in Table 2.4), we have applied a slight modification of Lebedev’s algorithm for
Chebyshev stability functions.

2 Construction of stability polynomials.

Our problem is to find, for a given s, a polynomial of the form (1.6) such that
the corresponding real stability interval is, in the direction of positive z, as large
as possible. We introduce the coordinate change 2 = It so that (1.6) becomes

(2.1) Fy(t) =1—1t+---+ (1Pt /pt+ Y (dil')t!
i=p+1
and require that

2.2) max [F()] < 1,

with [ as large as possible. The optimal polynomial, among all polynomials of
order p, possesses a Chebyshev alternation (called equal ripple property by Riha
[16]):

THEOREM 2.1: For s > p condition (2.2) is satisfied with mazimal | if there
exist 8 + 1 — p points

t;i:0<ty <t2"'<t,+1_pS1
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such that: ' .
(2.3) Fy(t;) = (=1)P+-1, i=1,...,84+1-p

The existence of such a polynomial with Chebyshev alternation is then assured
by Riha [16] (see Figure 1.1).

In the situation corresponding to problem (1.7), with add1t10nal dampmg, we
obtain the requirement

2.4 F,(t)| <
(2.4) trg[a’xll &) <n,

with [ as la.rge as possible and with € ~ (1 — /2n —1)/I. Here we e will construct
polynomials which satisfy s +1—p pomts

ti:€<t1 <t2"'<ta+‘1—ps 1
such that '
(2.5) - F(t;) = (=11, i=1,...,8+1—p.

The first idea to construct such polynomials is the use of a Remez type proce-
dure (see [4, 12, 15]). But the Jacobian in this algorithm very quickly becomes
ill-conditioned and it is impossible to construct higher degree polynomials with
this method.

An alternative method, which works for all degrees, has first been developed

for second order polynomials by 1 and by Medovikov and Lebedev
[7, 11]. This method is based on the following fact: For a given weight function
q(z), defined for some interval a < z < b, there exists an excellent algorithm for
computing the polynomial “of least deviation from zero”

Pa(z) = [[(= - B0,

=1
such that

inf max |P()g(s)] = max |Pa(z)a(a)]

This algorithm is descrlbed in more detail in Section 3 below and has been
incorporated in the code BERN [7, 11]. In order to use this algorithm for our
problem, we write the polynomial F,(t) of (2.4) as the product

Fy(t) = wp(t)Go—p(t),
where wy(t), of the form
(2.6) wp(t) = 1 —rit + 1ot + - + (=1)Pr,t?,
is considered as (firstly unknown) weight function. Then

Gusp() = I (1—t/7)

i=p+1
- is the minimal solution on the interval [¢*, 1] obtained from BERN in dependence
of this weight function, where 0 < € < €* < 1 (see Figure 2.1).

11t is a Russian tradition to place deceased colleagues into a framebox.
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Figure 2.1: Computation of a third order polynomial with Algorithm 2.2.

We then adapt iteratively wpy(t) and €* in order to satisfy

2.7 : m=m=n,
where : s

(2.8) = max |Fs(2)],
and the value

(2.9) ' T = max |Fs(8)]

is the local maximum of the function |F,(t)| in the half-open interval |0, €*]. This
value is either equal to F, (¢*) or equal to F, (to), where F!(to) = 0 and o €0, €*.
We also must satisfy the order property of the polynomial

(2.10) . P FP(t)s=o = (-1)?

or, in terms of the parameters of the polynomials wy(t) and G,_p(t),

p=1: r = l—Zl/'y;,.
p<i .
8 . 8 1
p=2: rp = l2/2!—r121/'y,~— Z —,
- p<i p<i<k YTk
(2.11)
. 8 1 8 1 i 1
p=3: r3 = l3/3!—7‘1 E - — T2 - ’
p<ick ViVk p<i i pcicka TV
- 1 ~ 1
p=4: re = Mj4l-n Z - —T2 Z —
pick<t TN 2y W
8 8
1 1
SO ISy e
p<i V¥ pcick<i<m VVENYm

The parameters +; are the roots of the least deviation from zero ‘polynomial
G,-p(t) with the weight function wy(t), consequently the values v;, i = p +
1,...,8 are functions of the coefficients r;, i = 1,...,p and €¢*. So, we have p
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equations and p + 2 variables in (2.11): ry,...,7y,l,€*. The values m and 72
are also functions of r1,...,7p,1,€*. Next we add to system (2.11) the equations
vvrhihh fallowr frnm (9_7)’

VAl AJAASWY asllais (&

(212) 7)1(7‘1,---,1'p,l,€*) = n
(213) 772(7‘1,---,7‘p,l,€*) = 771(7'1,---,7'1:,1;5*)-

The solutions of (2.11), (2.12) and (2.13) give us polynomials which satisfy
(2.4) and (2.5). Inequality (2.4) is valid because we have |Fs(e)] < nif e =
(1 - 27—=1)/I (due to 1 — It < F,(t) < 1~ 1t +1%?/2 in a small vicinity of
zero). The function |F,(t)| is smoothly diminishing in the interval [0, €], and the
point to of the local maximum of the function |F,(t)| in the partly open interval
10, €*] belongs to the interval [¢,€*]. So, we can enlarge the interval [€*, 1], from
inequality (2.8), up to [¢, 1] like in (2.4),

F,(t)| = F, = < = =n
t»xsltlelae’sll o (t) tén[é‘-“,‘lll'(t)‘ g_‘[?ff]lFa(t)l_nz m=n

Property (2.5) is valid because the polynomial G,_p(t) is the least deviation from
zero on the interval [¢*, 1] with weight function wy(t). According to Chebyshev’s
theorem about approximations by a polynomial [19, 18], there exist s —p+1

points {t;}2517?, t; € [¢*,1] € [¢, 1] in Chebyshev alternation (2.5), where n; =1,

Fy(t) = (=10°m, ..., Fo(t:) = ()" '

We tan now formulate the algorithm of construction of the “near” optimal
polynomials.

ALGORITHM 2.1. Choose the desired value of damping: 7 < 1 (for example,
0.96 < 1 < 0.985). Take some initial approximations of the roots ; (=
p+1,...,8) of the polynomial G,_p(t) and of values ! and €*.

1. Find the parameters of the weight wy(t) from (2.11).

9. Find the new roots of the polynomial of least deviation from zero G,—p(t)
with the weight function wy(t) in the interval [e*,1] with the algorithm
explained in Chapter 3. '

3. Calculate the value of deviation from zero 7, on the interval [¢*,1] and
me-value of local maximum of the function |Fy(t)| in the interval ]0,e*],
and recalculate the new values ! and €* as :

lnew = l+C1('Tl —771);
e:lew = €+ C2(n1 - 772)’
where the values ¢; and (; are some iteration parameters. Then we accept

the new values . and €., as new parameters ! and €* and return to
Step 1.
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Table 2.1: The stability regions of the “near” optimal second order polynomials.

[ Degree | Stability Value Degree | Stability Value
8 regionl | f2=1/8® ) regionl | By =1fs®
5 19.389406 | 0.7755762 7 38.988738 | 0.7956885
9 65.044521 | 0.8030187 17 234.00230 | 0.8096965
25 507.29811 | 0.8116769 45 1646.0316 | 0.8128551

Table 2.2: The stability regions of the

“pear” optimal third order polynomials.

Degree | Stability Value Degree | Stability Value
s region! | Bz =1/’ s regionl | B3 =1/s"
3 2.500512 | 0.2778346 6 15.967696 | 0.4435471
9 38.317952 | 0.4730611 15 109.96357 | 0.4887269
21 217.95736 | 0.4942343 36 644.30201 | 0.4971466
48 1145.8047 | 0.497311 243 29376.454 | 0.4974928

Table 2.3: The stability regions of the “near” optimal fourth order polynomials.

Degree | Stability Value Degree | Stability Value
s region! | B4 =1/s? 8 regionl | By =1/s’
6 9.9330219 | 0.2759172 8 19.852540 { 0.3101959
10 32.545736 | 0.3254573 14 66.644594 | 0.3400234
16 87.9657997 | 0.3436164 24 201.71096 | 0.3501926
40 565.19543 | 0.3532471 50 884.68508 | 0.353874

¢

This iterative process leads us to the
satisfy conditions (2.5) and (2.4).

The author has computed these polynomials for order 2, 3 and 4 up to degree
243. The results for degrees 9, which correspond to the polynomials drawn in
Figure 1.1, are presented in Table 2.4. The other values can be obtained from
the author. Tables 2.1, 2.2 and 2.3 contain the values of [ for some selected
values of s. It can be observed that they behave like | = 5% where 8; ~ 0.81,
Bs = 0.49, B4 =~ 0.35. This confirms the values found by Metzger [15], Lomax
[12] and van der Houwen [4] (see also Verwer [21]). Compared to Euler’s method
whose stability interval has length 2 per step, our methods allow an acceleration

“near” optimal polynomials F,(t) which

2
of v, = g%_ = 52 8, which becomes enormously advantageous for large s.

3 Construction of the least deviating from zero polynomials with
weight functions.

Let there be given a smooth function q(z), positive in the interval (—1,1).
PROBLEM 3.1: Construct the polynomial '

(3.1) Pu(z) = [[(= - 82,
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Table 2.4: The roots of the first, second, third and fourth order stability polynomials
degree 9 for n = 0.98.

Order Roots
o1 0.0077207095, 0.067104428, 0.17870931, 0.32907416,
0.50006276, 0.67105137, 0.82141622, 0.93302111, 0.99240483
2 (2.0092404E-2,+ 2.0619529E—2), 0.15436564, 0.31091584,
0.48696657, 0.66256497, 0.81684573, 0.93131413, 0.99221162
3 (2.3078425E-2,+ 6.4071797E-2), 0.057070367, 0.26509004,
0.456444306, 0.64340227, 0.80668150, 0.92754760, (.991780672
4 (9.6446753E-3,+ 1.2892855E-1), (9.0545672E-2,+ 4.8412173E-2),
0.39412417, 0.60723386, 0.78806692, 0.92074069, 0.99102274

| of the least deviation from zero with the weight function g(z) in the interval
[-1,1].

This means that we have to find the roots (or coefficients) of a polynomial of
degree n so that
3.2) inf 2o |Pn(z)q(2)| = L IPn(fv)tI(-’B)l
Analytical solutions of this problem are comphcated and we know only some
special solutions; for example, if g(z) = 1 the solutions are the Chebyshev poly-
nomials, [19]. Let p(z) = ¢?(z). Here we describe a numerical algorithm for
problem 3.1. The algorithm is based on the following theorem which we state
without proof: _

THEOREM 3.2 (see [1, 10, 13, 17]) If 0 < A < p(z) < A and |p(x + 6) —
p(z)||Ind|*+¢ < K (e and K some constants) the polynomial P,(z) of least de-
viation from zero with weight function \/p(z) in the interval [—1,1] is ezpressed
in asymptotical form as

Pu(z)

n = Mn 2( ) cos(nfd + ¥(6)) + en(x), 0 = arccos(z)
(3.3) e
' 1 lnp(Z) lnp(-’b') /1 -
¥() 21r._1 - z2

COROLLARY 3.3: The roots By, of the polynomial of Theorem 3.2 satisfy asymp-
totically
(3.4) nb; + (k) =~ n(k - 0,5), Br = cosby,
k=12,...,n,n = 0.

Szegd proved that e€,(r) — 0 uniformly as O((Inn)~¢) if p(z) is Riemann
integrable and is of the form (see [17])

p(z) = w(z)lz - 2,

|2-r1 . |2‘rx ,

e -
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where 7; > 0, |zi| < 1, 0 < const; < w(z) < consty. If this is the case the
" €én(z) — 0 pointwise for n = .
Let us consider the special case of a polynomial weight function

P

wp(z) = H(z - a;).

=1

- In this case the function 1 is the sum of the functions 1;, which possess an
elementary integral

- 1
_ l ln(z - 05)2 - ln(z - a..-)2 1—22
%) = 21r/ z2—z =%
=1

sin @ ) i=1
cose—p,- ’ =4,..,p

(3.5)
= 2 a.rcta.n(

where p; = a;++/ a:‘-’ — 1. Formula (3.5) furnishes excellent initial approximations
of the roots §; of P,(z) with the weight function wp(z) as solutions of the
equations

_ wk-0,5) 1& _
- (36) 0 = —-n—-——;Z«‘p.-(ok), k=1,...,n.

=1
Br = cosby

One can solve these equations by some iteration method, for example, by

~ i+1 _ mk-05 1 Ld ni 3
3.7) o = - ;«l;.wi), k=1,...,n,
, Bitt = cosit!,
starting from
0%:.7@_%0’_5), k=1,.“’,n.

The rate of convergence of the algorithm speeds up with n. This property
follows immediately from (3.7). Then program BERN improves iteratively these
solutions which leads in a few steps to the solution of (3.1) (see Lebedev [10] for
details). :

We remark that program BERN can treat also more general weight functions
such as the product of exponential functions with argument as Chebyshev series,
spline interpolations and Lagrange interpolations. Moreover, the program can
construct the polynomials of least deviation from smooth functions.

4 Construction of pth order explicit composition methods.

After having constructed pth order stability polynomials with maximal stabil-
ity region in Chapter 2, we shall now construct pth order Runge-Kutta methads
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for these stability polynomials. For this aim, we shall use the theory of compo-
sition methods.
Let us consider two consecutive steps by explicit methods A and B:

A:

. 81 .
Y, = yo+h2&.'jf(to+é,-h,Yj), i=1,...,8,
(4.1) o )
o = Y+ h _Zlbjf(to + éjh,Yj), a,'j =01ifi <y,
j= :
B:
~ 82 ~
Vi = fo+h) ayflo+EhY;), i=1...,8,
(4.2) e )
y = Goth Zlbjf(to +Eh,Y;), @i =0ifi <.
J-_'—

DEFINITION 4.1. We will call the method which is the result of one step of A
and one step of B as the composition method C =B(A): ‘

i = gpo+h)y aflto+chYy), i=1....8
~
(4.3) ",

where s = 87 + 32.
The st.ability function of the composition method C is the product

44) Ry(2) = Quy (2) Py (2),

where Q,,(z) and P,, (z) are the stability functions of B and A respectively. For
the method C with coefficients a;;, b; must hold the usual order conditions

s
p=1: ¢(r) := b = 1,
i )
s 8
p=2: c(tn) = ‘ 2 Y biai; =2 bici = 1,
i,j=1 i=1
s
p=3: clts2) = 6 Z biaija;x = 6b'A%e = 1,
B 1,];k=1 - .
cts1) = 03 E biaijaik = 3 Z b,-c? = 1,
. 8
b= 4: c(t44) = 24. E b,-a.-ja,-kau = 24btA38 = 1,
. 1,4,k d=1 .
c(tys) = 12 > biaijajras =12 Z b,-a,'jc? = 1,
J,ksl=1 i,j=1
s s
c(te) == 8 > biaijaikaqn = 8 2 biciaijc; = 1,
iij 1l=1 “’J=1

8
biaijaikaq = 4 ) b,-c? = 1.

8
i.4.k,1=1 i=1

c(ty) = 4
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For the solution of our problem, we take some pth order optimal polynomial
R,(z) (from Chapter 2) and divide the set of its roots in two subsets. First we
choose s; = s — p roots for the stability polynomial P, (z) of method A, and
the remaining p = s, roots for the polynomial Q,, (2):

Ru(2) = Qu(Pu (@) = 1- 24+ (<1P22pl+ 3" did
i=p+1

Any stability function of a method with p > 2 has at least two complex conjugate
roots. We include all complex roots into the stability function of method B. One
can express the order conditions of a composition of methods in terms of the
parameters of the submethods A and B as follows (see Hairer, Ngrsett, and
. Wanner (2, §IL.11]):

c(r) = ¥r)+a(r),

C(t21) = b(tzl) + 2b(1')a(r) + a(tzl),

c(t31) = b(t31) + 3b(T)0,2 (T) + 3b(t21)a('r) + a(tal),

c(ts2) = b(ts2) + 3b(T)a(tar) + 3b(ta1)a(r) + a(tsz),

(4.6) c(tsr) = b(tar) + 4b(r)a3(r) + 6b(ta1)a®(r) + 4b(t31)a(rT) + a(te),
c(tsz) = b(tg2) + 4b(r)a(t21)a(r) + 6(§b(t21)a(t21) + %b(tm)az(f))
+ 4(§b(t31)a(‘r) + %b(taz)a(’r)z + a(t42),

C(t43) = b(t43) + 4b(1')a(t31) + 6b(t21)a (T) + 4b(t32)a(‘r) + a(t43),
C(t44) = b(t44) + 4b(r)a(t32) + 6b(t21)a(t21) + 4b(t32)a(‘r) + a(t44),

where ¢(t) are defined in (4.5) and a(t) respectively b(t) are the analogous ex-
pressions for methods A and B. One can rewrite the order conditions (4.5) as
follows '

order | conditions

e(r) =1,

C(t21) = 1’

C(tal) =1, c(t32) =1,

c(ta) =1, cltaz) =1, c(tss) =1, c(tss) = 1.

4.7)

TR
[ T T
O N

We construct the pth order composition method as follows. We first choose
some s — p stage method A (with stability polynomial P,_,(z) from (4.4)). For
example, we can take method A as a sequence of s —p steps of Lebedev’s method
(1.8) with the parameters (take even values s — p here)

1 1 1
% = =(—+= L i=1,...,(s-p)/2,
: 2 (’Yi+p ’h—i+1) (s = p)/

_ 4 Tirpo—in1
R 2
(Fi+p + Fo—it+1)

v, =

where ¥; are the roots of the stability polynomial P,_,(2). In this case the table
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of the method A is the following:

0 | 0 0 0
a a; 0 . 0
20, | 1+wm)as (1-m)a e 0
(4.8) : : - :
. (1 + ul)al vee Qscp 0
a |l+wn)a (1+u._;z)a._?1 (I—V%i)a%g
whére |
(s—p)/2
a=2 Y a=-P_, 0.
- =1

Now we can simply calculate the expressions a(7),a(ta1),..,a(tss). The equa-
tions (4.6) and the order conditions (4.7) now allow to determine the expressions

b(T), b(tzl), N ,b(t44):

p=1: b(r) = 1-a(),
p=2: b(ta) = 1- 2b(7)a(1) — a(t21),
p=3: blta) = 1-3b(r)a*(r)— 3b(ta1)a(r) — alts1),
b(tsz) = 1-— 3b(7)a(tay) + 3b(t21)a(r) + a(ts2),
p=4: blta) = 1-4b(r)a*(1) - 6b(t21)a(1) — 4b(ts1)a(r) — a(ta1),
- bltag) = 1- 4b(r)a(ta1)a(r) — 6,(§b(t21)a(t21) + §2b(t21)a2(7))
—4(%b(t31)a(’r) + -lgb(tsz)a(‘r)) - a(t42),
b(tss) = 1- 4b(1)a(ts1) — 6b(t21)a2 (r) - 4b(t32)a(1') — a(ts3),
b(t44) = 1- 4b(1')a(t32) - 6b(t21)a(t21) bt 4b(t32)a(7') - a(t44).
(4.9) '

The values b(r), b(t1), b(ts2) and b(tss) are the p coefficients of the stability
polynomial Qp(2) = -P—I‘%%%. Consequently, if we find the parameters of the -
method B from equations (4.9), method C = B(A) will have the stability poly- .
nomial R,(z) with the optimised stability region and it will have order p. We
have computed the parameters b; and &;,; from equations (4.9) for p < 4 and
8 < 243 (see the next section).

5 Embedded explicit composition method.

To write a reliable code one needs to write an error estimation procedure. For
this, we constructed embedded formulas of order p — 1 which allows a step size
control procedure (see Hairer, Nprsett, and Wanner [2, §I1.4]).

We have to find formulas for the coefficients a;;, 5,- of a method B for which C
= B(A) will be of order p, together with coefficients b; of an embedded method
B’ for which C’ = B’(A) is of order p— 1.
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THIRD ORDER METHOD:
The table of the method B is

0f0 o0 0O
C3 |G31 as2 0O
b b b
b b2 by by
In this case equations (4.9) are
by+by+bs = b(r)
bas +bsés = b(tn)/2 bi+be+bs+bs = b(r)
b2 + b3 = bts1)/3 BB + bals + by % b(T) = b(ta1)/2

bdisaly = b(ts2)/6

The first system has four equations and six variables, the second one two equa-
tions and four variables. Consequently, one can add four equations to obtain
some additional properties of the method, like internal stability, economic stor-
age and so on.
We optimize the error control procedure by taking into account the formulas
for the stability functions of the method C = B(A), of the embedded method
= B’(A) and the difference E(2) = R,(2) — R,41(2):

R(2) = (1 +diz+ zp:d,,z"/k!) Pu_y(2),
| )
(5.1) Ret1(2) = (1 +diz+ Y dp2t /k!) P,_,(2),

k=2

E(z) = %’;((dp—«io ""ff) Preyl(2),

where P,_,(z) is the stability function of the method A, d; and d; (d; = d;,i =
1,...,p — 1) are the coefficients of the stability function of methods B and B’
respectively. The coefficients d; are linear functions- of the parameters b,, j=
1,...,p+1. Consequently, some requirement for the stability function of the
method B’: Rpi1(z) =y gives us linear equation for the coefficients b;.

For example, one can take additional equations as follows:

G3; = b d3s = b
5.2 - asi 1, _ Q32 25
(52) Rep1(21) =0, Ryy1(z2) =0,

where z; is a real root of the stability function of method B and z; = f3(s)
a bound for the stability region. This choice is taken in program DUMKA.
Program DUMKA uses only three arrays of storage. The sta.blhty functions
Rs(2), Ry41(z) and E(z) are shown in figure 5.1 (left) for s =
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WV

=1 = 1d

Figure 5.1: Stability polynomials of the method C (thin line), embedded method C
(thick line) and its difference E(2) (dashed line).

FOURTH ORDER METHOD:
The table of method B is

010 0 0 0
Galdyn O 0 O
C3 531 532 0 0
Gy |G Gg2 843 O
by b2 by by
by by b3 by bs
In this case equations (4.9) are
( b1+b2+b3+b4 = b(7r)
szz + b363 + b4C4 = b(tzl)/2
bzézz + b352 + b462 = b(t31)/3
- bz(g + 1)303x + b403 = b(t41)/4
ﬁ bsazls + ba(Gals + Basls) = b(t32)/6
63030.3262 + b4C4(a4262 +d4363) = b(ta2)/8
b3dz2d + b4(a4zc§ +8438) = b(tss)/12
{ badasdanés = b(taa)/24
and
) Bi+ba+bs+bat+bs = b(7)
baGz + b33 + byCq + bg * b(r) = b(tzl)/2
bzé% + b362 + b452 + b5 * bz(T) = b(t31)/3 )
b3a3262 + b4(a4202 + G4383) + b5(b262 + b363 + b4C4) = b(ts2)/6

The first system has eight equations and ten variables, the second one has fou
equations and five variables. We can choose two parameters in the first systen
and one parameter in the second. To obtain the solution of the first system on
can use the same ideas as in the case of the usual fourth order method with b()

The addltlona.l equations for program DUMKAA4 are the following:
(5.3) C = b(T)/3, c3 = 2b(7’)/3, R,+1(z1) =0,

where z; = f4(s) is a bound for the stability region. The stability function
R,(2), Rs+1(2) and E(z) are shown in the Figure 5.1 (right) for s =9.
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Figure 6.1: Actual obtained precision versus computing time of the tested codes.

Finally the code uses a standard step-size control procedure (see e.g. Hairer,
Ngrsett, and Wanner (2, §II. 4], or Hairer and Wanner [3, §IV.2)):

err; = “y]_ —glll, .
(5:4) hnew = hmin(facmaz, max(facmin, fac(tol/err)Y/?)) or
Rnew = hmin(facmez, max(facmin, fac(tol/err1)“/”(erro/tol)ﬁ/")),

where || - || is a some norm in R™, h is the step-size of the previous step, facmin
and facma, some factors, tol is the tolerance which is required for our calcula-
tions, err is an error in the previous step, and a and g are parameters of the
step-size control procedure.
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6 Numerical results.

We have used the test problems Brusselator, Nagumo, Cusp and Burgers from
the book of Hairer and Wanner [3, first edition; p.167]. We took four programs
RKC (Sommeijer [6]), DUMKA ([11] (first and second order explicit method)
and DUMKA3? (third order method), DUMKA4 (fourth order method with the
coefficients computed above) and solved these problems with varying values of
tol. The results are represented in Figure 6.1 in logarithmic axes (in the abscissa

the accuracy, in the ordinates the computing time in seconds).

The codes DUMKA3 and DUMKA4 are provided with variable step size con-
trol. They adjust the number of stages s automatically as to satisfy in each
integration step the stability condition ho( f'(y)) < Bo(s) where a(f'(y)) is the
spectral radius of the Jacobian matrix. DUMKAS3 has two realizations with 3
and 5 arrays of storage respectively and uses stability polynomials of degrees
3 up t0 Spmaz = 243 with stability region (3(8maz) ~ 29376. The use of the
programs DUMKA3 and DUMKA¢ requires two SUBROUTINES: a subroutine
for calculation of the right hand of the equation and a program for an upper
estimation of o(f'(y)), which normally renders no problem.

) ,;/,7/,‘,///
o

i
i
///W%%%
// s

Figure 6.2: Solution of Burgers equation by DUMKAS3 (step size and each function
evaluation) and Euler method (with: a) every computed step, b) every function eval-
uation, c) every Euler step ).

Figure 6.2 presents an illustration of the performance of the code DUMKA!
compared to the explicit Euler method. We choose the semi-discrete viscout

2gource codes for DUMKA3 and DUMKA4 and some examples can be obtained fron
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2 2
Ugyy — Uk Uk—1 — U + U4
_ Uk i +

4Azx Azx? ’
u(0) = 15z(1-z)%, u=00005, ze[0,1], tel0,25)

It can be observed how for Az = 1/150 DUMKA3 adjusts the values of s from
8 = 3 in the starting step, to s = 6 and s = 9 in the smooth phase, and finally,
after appearance of the shock, reduces s to 6 and 3 again. For smaller value of
Az (e.g. Az =1/5000) the largest value of s reaches 243.

In general, the mean time step (per one function evaluation) for parabolic equa-
tions in Euler’s method is approximately k., = O(Az?/u), while for DUMKA3
we have hgym = O(Az/ V). -
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